- **1.** D'après la description de la transformation, de nouvelles espèces chimiques se forment $(CO_2(g))$ et $H_2O(g)$. Ces espèces chimiques n'existaient pas à l'état initial, il s'agit donc d'une transformation chimique.
- 2. $C_2H_4(g) + x O_2(g) \rightarrow 2 CO_2(g) + 2 H_2O(g)$

Pour que l'équation soit ajustée, il faut, pour chaque type d'atome, le même nombre d'atomes dans les réactifs et les produits.

Pour l'élément oxygène, à droite de l'équation, on a : $2 CO_2 + 2 H_2O$.

 $2 \times 2 + 2 = 60$, il faut donc à gauche de l'équation autant de O.

Comme à gauche on a O_2 , on en déduit que x = 3.

Pour respecter la conservation de l'élément oxygène O, il faut x = 3.

3. $C_2H_4(g) + 3 O_2(g) \longrightarrow 2 CO_2(g) + 2 H_2O(g)$

D'après les nombres stœchiométriques, la réaction d'une mole de C_2H_4 nécessite 3 moles de O_2 .

On en déduit, par proportionnalité, que la combustion de 5 moles de C_2H_4 nécessite $5 \times 3 = 15$ moles de O_2 . Or le récipient contient 20 moles de O_2 , donc O_2 est en excès et C_2H_4 est le réactif limitant.

4. Équation de liquéfaction de l'eau :

$$H_2O(g) \longrightarrow HO_2(\ell)$$