Chapitre 3

Continuité et convexité

Revoir des points essentiels

77 D'après l'énoncé, $f(x) = x^3 - 12x + 3$.

• On commence par établir le tableau de variation de f sur l'intervalle [2; 5].•

L'expression de sa dérivée est :
$$f'(x) = 3x^2 - 12$$

= $3(x^2 - 4)$
= $3(x - 2)(x + 2)$.

Puisque x est un réel de l'intervalle [2 ; 5], le produit 3(x + 2) est positif.

On en déduit que f'(x) est du signe de l'expression (x-2).

Cela permet d'établir le tableau ci-dessous :

x	2	5
f'(x)	0 +	
f(x)	-13	68

• On utilise ensuite le corollaire du théorème des valeurs intermédiaires en rappelant les conditions.

Sur l'intervalle [2; 5], le tableau de variation indique que la fonction f est continue et strictement croissante.

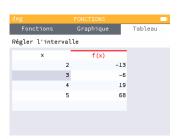
De plus, f(2) = -13 et f(5) = 68 donc 0 est compris entre f(2) et f(5).

D'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution notée α sur l'intervalle [2; 5].

à x = 2 avec un pas de 1.

tableau de valeurs de f(x) sur [3; 4] avec un pas de 0,1.

a. On commence le balayage | b. On forme ensuite un | c. On recommence à partir de x = 3.3 avec un pas de0,01.



deg	- 1	FONCTIONS	100	
Fonctions		Graphique	Tableau	
Régler l'intervalle				
x	-	f(x)	1	
	3	-6		
	3.1	-4.409		
	3.2	-2.632		
	3.3	-0.663		
	3.4	1.504		
	3.5	3.875		
	3.6	6.456		
	27	ח הבם		

Fonct	ions	Graphique	Tableau
Régler l	'intervall	.e	
	x	f(x)	
	3.3	-0.663	
	3.31	-0.455309	
	3.32	-0.245632	
	3.33	-0.033963	
	3.34	0.179704	
	3.35	0.395375	
	3.36	0.613056	
	9 97	0 001750	

À l'aide de la calculatrice, $3,33 < \alpha < 3,34$.

Indice Terminale Complémentaires – Revoir des points essentiels

78 D'après l'énoncé, $f(x) = -2x^3 + 9x^2 - 30$.

• On commence par établir le tableau de variation de f sur l'intervalle [-2; 0].

L'expression de sa dérivée est :
$$f'(x) = -6x^2 + 18x$$

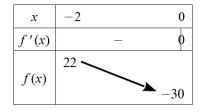
= $6x(-x+3)$.

Puisque x est un réel de l'intervalle [-2; 0], le facteur (-x + 3) est positif.

On en déduit que f'(x) est du signe de l'expression 6x. Cela permet d'établir le tableau ci-contre.

· On utilise ensuite le corollaire du théorème des valeurs intermédiaires en rappelant les conditions.

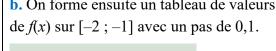
Sur l'intervalle [-2; 0], le tableau de variation indique que la fonction f est continue et strictement décroissante.



De plus, f(-2) = 22 et f(0) = -30 donc 0 est compris entre f(0) et f(-2).

D'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution notée α sur l'intervalle [-2; 0].

a. On commence le balayage à x = -2 avec | **b.** On forme ensuite un tableau de valeurs un pas de 1.



À l'aide de la calculatrice, $-1.6 < \alpha < -1.5$.

79 D'après l'énoncé, $f(x) = x^3 - 5x + 2$.

L'expression de la dérivée de f est : $f'(x) = 3x^2 - 5$.

L'expression de la dérivée seconde de f est : f ''(x) = 6x.

 $6x \ge 0$ équivaut à $x \ge 0$. On en déduit le tableau ci-contre.

Sur l'intervalle $]-\infty$; 0], f " est négative donc f est concave.

Sur l'intervalle $[0; +\infty[, f]]$ est positive donc f est convexe.

x	$-\infty$ () +∞
f ''(x)	_ () +
f	concave	convexe

80 D'après l'énoncé, $f(x) = 3x^4 - 6x^3 - 4$.

L'expression de sa dérivée est : $f'(x) = 12 x^3 - 18 x^2$.

 $f''(x) = 36 x^2 - 36 x$ L'expression de sa dérivée seconde est : = 36 x (x-1).

f''(x) est un polynôme du second degré dont les racines sont 0 et 1 et pour lequel le coefficient de x^2 est positif. On en déduit le tableau ci-contre.

Sur les intervalles $]-\infty$; 0] et $[1; +\infty[, f]$ " est positive donc *f* est convexe.

Sur l'intervalle [0; 1], f " est négative donc f est concave.

x	$-\infty$ ()	1 +∞
f ''(x)	+ () –	+
f	convexe	concave	convexe