81. Appliquons la méthode de la capacité 6 p. 84 :

1.
$$u_0 = 5 \times 0^2 + 2 = 2$$
, $u_1 = 5 \times 1^2 + 2 = 7$ et $u_2 = 5 \times 2^2 + 2 = 22$.

Ainsi
$$\frac{u_1}{u_0} = \frac{7}{2} = 3,5$$
 est différent de $\frac{u_2}{u_1} = \frac{22}{7} \approx 3,14$.

La suite (u_n) n'est pas géométrique.

2.
$$\frac{v_{n+1}}{v_n} = \frac{7 \times 3^{n+1}}{7 \times 3^n} = \frac{7 \times 3^n \times 3}{7 \times 3^n} = 3$$
 donc $\frac{v_{n+1}}{v_n} = 3$ est une constante qui ne dépend pas de l'indice n .

On en déduit que la suite (v_n) est géométrique de raison q=3 et de premier terme $v_0=7\times 3^0=7$.