68 a. La fonction affine f définie sur \mathbb{R} par f(x) = 1 - x est décroissante sur \mathbb{R} . Comme $1 \le x \le 100$, alors $f(1) \ge f(x) \ge f(100)$, soit $0 \ge 1 - x \ge -99$, que l'on peut écrire $-99 \le 1 - x \le 0$.

b. 1, x et 100 sont positifs et la fonction carré est croissante sur $[0; +\infty[$.

Comme $1 \le x \le 100$, alors $1^2 \le x^2 \le 100^2$, soit $1 \le x^2 \le 10000$.

c. 1, x et 100 sont strictement positifs et la fonction inverse est décroissante sur]0; $+\infty[$.

Comme $1 \le x \le 100$, alors $\frac{1}{1} \ge \frac{1}{x} \ge \frac{1}{100}$, soit $1 \ge \frac{1}{x} \ge 0.01$, que l'on peut écrire $0.01 \le \frac{1}{x} \le 1$.

d. La fonction cube est croissante sur \mathbb{R} .

Comme $1 \le x \le 100$, alors $1^3 \le x^3 \le 100^3$, soit $1 \le x^3 \le 1000000$.

e. La fonction racine carrée est croissante sur $[0; +\infty[$.

Comme $1 \le x \le 100$, alors $\sqrt{1} \le \sqrt{x} \le \sqrt{100}$, soit $1 \le \sqrt{x} \le 10$.