49 1. Dans un triangle, la somme des angles est égale à 180 °. En utilisant cette propriété dans le triangle AEB, on obtient $\widehat{AEB} + \widehat{EAB} + \widehat{EBA} = 180$, soit $\alpha + \widehat{EAB} + \widehat{EBA} = 180$.

On déduit alors que $\widehat{EAB} + \widehat{EBA} = 180 - \alpha$.

En utilisant cette même propriété dans le triangle ACB, on obtient $\widehat{ACB} + \widehat{CAB} + \widehat{CBA} = 180$ soit $\widehat{ACB} = 180 - (\widehat{CAB} + \widehat{CBA})$.

Comme $\widehat{BAE} = \widehat{EAC}$, on a $\widehat{CAB} = 2 \widehat{EAB}$.

Comme $\widehat{CBE} = \widehat{EBA}$, on a $\widehat{CBA} = 2\widehat{EBA}$.

On en déduit que :

$$\widehat{ACB} = 180 - (\widehat{CAB} + \widehat{CBA}) = 180 - (2\widehat{EAB} + 2\widehat{EBA}) = 180 - 2(\widehat{EAB} + \widehat{EBA})$$

et par conséquent $\widehat{ACB} = 180 - 2 (180 - \alpha) = 180 - 360 + 2\alpha$. Finalement $\widehat{ACB} = 2\alpha - 180$.

2. Le triangle ABC est rectangle en C si, et seulement si, $\widehat{ACB} = 90$, ce qui équivaut à :

$$2\alpha - 180 = 90$$
 soit à $2\alpha = 270$ et à $\alpha = \frac{270}{2}$, donc à $\alpha = 135$.

Le triangle ABC est rectangle en C si, et seulement si, $\alpha = 135^{\circ}$.