113 1. a.
$$\overrightarrow{CD}(2-0;7-4)$$
 donc $\overrightarrow{CD}(2;3)$.

$$\overline{\overrightarrow{EF}}(16-8; 29-17) \text{ donc } \overline{EF}(8; 12).$$

b.
$$\overrightarrow{4CD}(4 \times 2; 4 \times 3)$$
 donc $\overrightarrow{4CD}(8; 12)$.

 $4\overrightarrow{CD}$ et \overrightarrow{EF} ont les mêmes coordonnées, donc ils sont égaux.

 $\overrightarrow{EF} = 4\overrightarrow{CD}$, donc \overrightarrow{EF} et \overrightarrow{CD} sont colinéaires.

2.
$$\overrightarrow{CD}(2; 3)$$
 et $\overrightarrow{CE}(8; 13)$.

On ne voit pas de relation évidente entre les coordonnées des vecteurs \overrightarrow{CD} et \overrightarrow{CE} . On calcule le déterminant de ces deux vecteurs.

$$det(\overrightarrow{CD}, \overrightarrow{CE}) = \begin{vmatrix} 2 & 8 \\ 3 & 13 \end{vmatrix} = 2 \times 13 - 3 \times 8 = 2.$$

 $\det(\overrightarrow{CD}, \overrightarrow{CE}) \neq 0$ donc les vecteurs \overrightarrow{CD} et \overrightarrow{CE} ne sont pas colinéaires.