3 a. $(n+2)^2$ a pour diviseur n+2.

Si n + 2 = 1, alors n = -1: impossible car n est un entier naturel, donc $n + 2 \ge 2$.

Si $n + 2 = (n + 2)^2$, alors n + 2 = 0 ou n + 2 = 1, ce qui est impossible car $n + 2 \ge 2$.

Ainsi, a possède un diviseur autre que 1 et lui-même.

Donc a n'est pas premier.

b. Puisque $p \ge 3$, on a $p + 3 \ge 3 + 3$, donc $p + 3 \ge 6$.

p est un nombre premier différent de 2 (puisque supérieur ou égal à 3), donc p est impair.

Puisque p est impair, p + 1 est pair et donc p + 3 est pair.

Ainsi, p + 3 est divisible par 2 et différent de 2 : il n'est pas premier.